p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C24⋊9D4, C25.50C22, C23.513C24, C24.359C23, C22.2922+ 1+4, (D4×C23)⋊6C2, (C22×C4)⋊31D4, C24⋊3C4⋊19C2, C23⋊2D4⋊22C2, C23.187(C2×D4), (C22×D4)⋊8C22, C22.54C22≀C2, C23.10D4⋊52C2, C23.34D4⋊40C2, C2.21(C23⋊3D4), (C22×C4).851C23, (C23×C4).416C22, C22.338(C22×D4), C2.C42⋊28C22, C2.31(C22.29C24), (C2×C22≀C2)⋊9C2, (C2×C4⋊C4)⋊24C22, (C2×C4).373(C2×D4), C2.25(C2×C22≀C2), (C2×C22⋊C4)⋊22C22, (C2×C22.D4)⋊24C2, SmallGroup(128,1345)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24⋊9D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, faf=ac=ca, ad=da, eae-1=acd, ebe-1=bc=cb, bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1348 in 567 conjugacy classes, 116 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C22.D4, C23×C4, C22×D4, C22×D4, C22×D4, C25, C24⋊3C4, C23.34D4, C23⋊2D4, C23.10D4, C2×C22≀C2, C2×C22.D4, D4×C23, C24⋊9D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, 2+ 1+4, C2×C22≀C2, C23⋊3D4, C22.29C24, C24⋊9D4
(1 9)(2 17)(3 11)(4 19)(5 27)(6 29)(7 25)(8 31)(10 22)(12 24)(13 28)(14 30)(15 26)(16 32)(18 23)(20 21)
(1 13)(2 24)(3 15)(4 22)(5 14)(6 21)(7 16)(8 23)(9 28)(10 19)(11 26)(12 17)(18 31)(20 29)(25 32)(27 30)
(1 8)(2 5)(3 6)(4 7)(9 31)(10 32)(11 29)(12 30)(13 23)(14 24)(15 21)(16 22)(17 27)(18 28)(19 25)(20 26)
(1 15)(2 16)(3 13)(4 14)(5 22)(6 23)(7 24)(8 21)(9 26)(10 27)(11 28)(12 25)(17 32)(18 29)(19 30)(20 31)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 3)(6 8)(9 29)(10 32)(11 31)(12 30)(13 15)(17 27)(18 26)(19 25)(20 28)(21 23)
G:=sub<Sym(32)| (1,9)(2,17)(3,11)(4,19)(5,27)(6,29)(7,25)(8,31)(10,22)(12,24)(13,28)(14,30)(15,26)(16,32)(18,23)(20,21), (1,13)(2,24)(3,15)(4,22)(5,14)(6,21)(7,16)(8,23)(9,28)(10,19)(11,26)(12,17)(18,31)(20,29)(25,32)(27,30), (1,8)(2,5)(3,6)(4,7)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,15)(2,16)(3,13)(4,14)(5,22)(6,23)(7,24)(8,21)(9,26)(10,27)(11,28)(12,25)(17,32)(18,29)(19,30)(20,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,3)(6,8)(9,29)(10,32)(11,31)(12,30)(13,15)(17,27)(18,26)(19,25)(20,28)(21,23)>;
G:=Group( (1,9)(2,17)(3,11)(4,19)(5,27)(6,29)(7,25)(8,31)(10,22)(12,24)(13,28)(14,30)(15,26)(16,32)(18,23)(20,21), (1,13)(2,24)(3,15)(4,22)(5,14)(6,21)(7,16)(8,23)(9,28)(10,19)(11,26)(12,17)(18,31)(20,29)(25,32)(27,30), (1,8)(2,5)(3,6)(4,7)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,15)(2,16)(3,13)(4,14)(5,22)(6,23)(7,24)(8,21)(9,26)(10,27)(11,28)(12,25)(17,32)(18,29)(19,30)(20,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,3)(6,8)(9,29)(10,32)(11,31)(12,30)(13,15)(17,27)(18,26)(19,25)(20,28)(21,23) );
G=PermutationGroup([[(1,9),(2,17),(3,11),(4,19),(5,27),(6,29),(7,25),(8,31),(10,22),(12,24),(13,28),(14,30),(15,26),(16,32),(18,23),(20,21)], [(1,13),(2,24),(3,15),(4,22),(5,14),(6,21),(7,16),(8,23),(9,28),(10,19),(11,26),(12,17),(18,31),(20,29),(25,32),(27,30)], [(1,8),(2,5),(3,6),(4,7),(9,31),(10,32),(11,29),(12,30),(13,23),(14,24),(15,21),(16,22),(17,27),(18,28),(19,25),(20,26)], [(1,15),(2,16),(3,13),(4,14),(5,22),(6,23),(7,24),(8,21),(9,26),(10,27),(11,28),(12,25),(17,32),(18,29),(19,30),(20,31)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,3),(6,8),(9,29),(10,32),(11,31),(12,30),(13,15),(17,27),(18,26),(19,25),(20,28),(21,23)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2S | 2T | 4A | 4B | 4C | 4D | 4E | ··· | 4K |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | 2+ 1+4 |
kernel | C24⋊9D4 | C24⋊3C4 | C23.34D4 | C23⋊2D4 | C23.10D4 | C2×C22≀C2 | C2×C22.D4 | D4×C23 | C22×C4 | C24 | C22 |
# reps | 1 | 2 | 1 | 4 | 4 | 2 | 1 | 1 | 4 | 8 | 4 |
Matrix representation of C24⋊9D4 ►in GL8(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0],[1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1] >;
C24⋊9D4 in GAP, Magma, Sage, TeX
C_2^4\rtimes_9D_4
% in TeX
G:=Group("C2^4:9D4");
// GroupNames label
G:=SmallGroup(128,1345);
// by ID
G=gap.SmallGroup(128,1345);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,185]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,e*a*e^-1=a*c*d,e*b*e^-1=b*c=c*b,b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations